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2.1 Introduction

In the seventies, Bas van Fraassen (1972, 1974) proposed an approach to quantum
mechanics different than those of the best known interpretations. According to
him, although the quantum state always evolves unitarily (with no collapse), it is a
modal element of the theory: It describes not what is the case but what may be the
case. This idea led several authors since the eighties to propose the so-called modal
interpretations (Kochen 1985, Dieks 1988, 1989, Vermaas and Dieks 1995, Dieks
and Vermaas 1998, Bacciagaluppi and Dickson 1999, Bene and Dieks 2002), that
is, realist, noncollapse interpretations of the standard formalism of quantum mech-
anics, according to which the quantum state assigns probabilities to the possible
values of all the properties of the system. But since the contextuality of quantum
mechanics (Kochen and Specker 1967) implies that it is not possible to consist-
ently assign definite values to all the properties of a quantum system at a single
time, it is necessary to pick out, from the set of all observables of a quantum system
the subset of definite-valued properties. The different modal interpretations differ
from each other mainly with respect to their rule of definite-value ascription (see
Lombardi and Dieks 2017 and references therein).

Like most interpretations of quantum mechanics, the traditional modal
interpretations were specifically designed to solve the measurement problem. In
fact, they successfully reached this goal in the case of ideal measurements.
However, a series of articles of the nineties (Albert and Loewer 1990, 1991,
1993, Elby 1993, Ruetsche 1995) showed that those traditional approaches based
on the modal views did not pick out the right properties for the apparatus in
nonideal measurements, that is, in measurements that do not introduce a perfect
correlation between the possible states of the measured system and the possible
states of the measuring apparatus. As ideal measurements can never be achieved in
practice, this shortcoming was considered a “silver bullet” for killing modal

32



The Modal-Hamiltonian Interpretation: Measurement, Invariance, and Ontology 33

interpretations (Harvey Brown, cited in Bacciagaluppi and Hemmo 1996). This
explains the decline of the interest in modal interpretations since the end of the
nineties.

What was not sufficiently noticed in the nineties was the fact that the difficulties
of those original modal interpretations to deal with nonideal measurements was
due not to their modal nature, but to the fact that their rule of definite-value
ascription made the set of definite-valued observables to depend on the instantan-
eous state of the system. An author who did notice this was Jeffrey Bub, whose
preference for Bohmian mechanics in those days can be understood in this context.
In fact, if Bohmian mechanics is conceived as a member of the modal family
whose definite-valued observables are defined by the position observable (Bub
1997), it turns out to be a natural alternative given the difficulties of the original
modal interpretations.

Bub showed that the shortcomings of the original modal interpretations can be
overcome by making the rule of definite-value ascription independent of the
system’s state and only dependent on an observable of the system. This was
certainly an important step. Nevertheless, it was not sufficient to rehabilitate modal
interpretations in the eyes of most philosophers of physics. What was not realized
at that time is that position is not the only observable that can be appealed to in
order to define the state-independent rule of definite-value ascription of a modal
interpretation. It is in this point that the modal-Hamiltonian interpretation (MHI;
Castagnino and Lombardi 2008, Lombardi and Castagnino 2008) entered the
scene: The MHI endows the Hamiltonian of the quantum system with the role of
selecting its definite-valued observables. With this strategy, it not only solves the
problems of the original modal interpretations, but can also be successfully applied
to many physical situations. However, perhaps due to the shadow of doubt that still
covers the entire modal interpretation project, the MHI did not receive a serious
attention by the community of the philosophers of physics. The present chapter
intends to contribute toward modifying this situation by introducing the MHI in a
conceptually clear and concise way, stressing its advantages both for facing the
traditional interpretive problems of quantum mechanics and for supplying a phys-
ically meaningful account of relevant aspects of the theory.

For this purpose, the chapter is organized as follows. In Section 2.2, the
two main interpretive postulates of the MHI will be introduced, emphasizing
the role played by the Hamiltonian in them. In Section 2.3, the measurement
problem is addressed from the MHI perspective; in particular, it will be argued
that, beyond the formal von Neumann model, quantum measurement is a
symmetry-breaking process that renders empirically accessible an otherwise
inaccessible observable of the system. Section 2.4 will be devoted to assessing
the MHI from the viewpoint of the invariances of the theory, in particular, of the
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Galilei group. Finally, in Section 2.5, the ontological picture suggested by the MHI
will be described, stressing how that picture supplies a conceptually clear solution
to some traditional interpretive problems of quantum mechanics.

2.2 The Modal-Hamiltonian Interpretation

In this section, we shall introduce the MHI without discussing its advantages over
other proposals. The arguments in its favor will become clear in the following
sections, where we will argue for its physical relevance and we will apply it to
solve some traditional interpretive challenges.

By adopting an algebraic perspective, the MHI defines a quantum system S
as a pair (O, H) such that (i) O is a space of self-adjoint operators representing
the observables of the system, (ii) H € O is the time-independent Hamiltonian
of the system S, and (iii) if p, € ) (where O is the dual space of Q) is the
initial state of S, it evolves according to the Schrodinger equation. Here we will
assume that the space O is a C*-algebra, which can be represented in terms of a
Hilbert space # (Gelfand-Naimark-Segal [GNS] theorem). In this particular
case, O = o and, therefore, O and O are represented by H ® #. Nevertheless,
O may be a different *-algebra, under the necessary conditions for its
representation.

In this algebraic framework, the observables that constitute the quantum system
are the basic elements of the theory, and the states are secondary elements, defined
in terms of the basic ones. The adoption of an algebraic perspective is not a merely
formal decision. As we will see in Section 2.5, when the logical priority of
observables over states is transferred to the ontological domain, the space of
observables turns out to embody the representation of the elemental items of the
ontology, and this has relevant interpretive consequences.

A quantum system so defined can be decomposed into parts in many ways;
however, not any decomposition will lead to parts which are, in turn, quantum
systems. The expression “tensor product structure” (TPS) is used to call any
partition of a closed system S, represented in the Hilbert space H = Hs®Hp,
into parts Sy and Sp represented in # 4 and H g, respectively. Quantum systems
admit a variety of TPSs, each one leading to a different entanglement between their
parts. However, there is a particular TPS that is invariant under time evolution: The
TPS is dynamically invariant when there is no interaction between the parts
(Harshman and Wickramasekara 2007a, b). In other words, in the dynamically
invariant case the components’ behaviors are dynamically independent from each
other; each one evolves unitarily according to the Schrodinger equation. On this
basis, according to the MHI, a quantum system can be split into subsystems when
there is no interaction among the subsystems.
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Composite systems postulate: A quantum system S: (O,H), with initial state
Py € O, is composite when it can be partitioned into two quantum systems
§': (O,H') and S*: (O*,H?), such that () O=0'®0° and (ii)
H = H'®I* + I'®H? (where I' and I? are the identity operators in the correspond-
ing tensor product spaces). In this case, we say that S' and S* are subsystems of the
composite system S = S! 4 §2. If the system is not composite, it is elemental.

With respect to the definite-valued observables, the basic idea of the MHI is that
the Hamiltonian of the system, with its own symmetries, defines the subset of the
observables that acquire definite actual values. The group of the transformations
that leave the Hamiltonian invariant is usually called Schrodinger group (Tinkham
1964). In turn, each symmetry of the Hamiltonian leads to an energy degeneracy.
The degeneracies with origin in symmetries are called “normal” or “systematic,”
and those that have no obvious origin in symmetries are called “accidental”
(Cohen-Tannoudji, Diu, and Lalde 1977). However, a deeper study usually shows
either that the accidental degeneracy is not exact or else that a hidden symmetry in
the Hamiltonian can be found that explains the degeneracy. For example, the
degeneracy in the hydrogen atom of states of different angular momentum [/ but
the same principal quantum number n arises from a four-dimensional rotational
symmetry of the Hamiltonian in momentum space (Fock 1935). For this reason it is
assumed that once all the symmetries of the Hamiltonian have been considered, a
basis for the Hilbert space of the system is obtained and the “good quantum
numbers” are well defined.

Once these symmetry considerations are taken into account, the basic idea
of the MHI can be expressed by the classical Latin maxim Ubi lex non
distinguit, nec nos distinguere debemus (where the law does not distinguish,
neither ought we to distinguish). The Hamiltonian of the system, with its
symmetries, is what determines which observables acquire definite values.
This means that any observable whose eigenvalues would distinguish among
eigenvectors corresponding to a single degenerate eigenvalue of the Hamilto-
nian does not acquire definite value, because such an acquisition would
introduce in the system an asymmetry not contained in the Hamiltonian. Once
this idea is understood, the rule of definite-value ascription can be formulated
in a very simple way:

Actualization rule: Given an elemental quantum system S: (O, H), the actual
definite-valued observables of S are H, and all the observables commuting with H
and having, at least, the same symmetries as H.

The justification for selecting the Hamiltonian as the preferred observable
ultimately lies in the physical relevance of the MHI and in its ability to solve
interpretive difficulties. These issues will be the content of the following sections.
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2.3 The Modal-Hamiltonian View of Quantum Measurement
2.3.1 Measurement and Correlations

In general, the quantum measurement problem is presented in terms of the von
Neumann model, without framing it in the context of the measurement practices.
But the purpose of a quantum measurement is not to discover the preexisting value
of a system’s observable, but to reconstruct, at least partially, the state of the
measured system. Therefore, the following distinction is in order:

o Single measurement: It is a single process, in which the reading of the pointer is
registered. A single measurement, considered in isolation, does not yet supply
relevant information about the state of a measured system.

o Frequency measurement: It is a repetition of identical single measurements,
whose purpose is to obtain the certain coefficients of the measured system’s
state on the basis of the frequencies of the pointer readings in many single
measurements.

A frequency measurement supplies relevant information about the state of the
system, but is not yet sufficient to completely identify such a state. In order to
reconstruct the state of the measured system it is necessary to perform a collection
of frequency measurements with different experimental arrangements.

The von Neumann model addresses the quantum measurement problem in the
framework of the single measurement. This is completely reasonable to the extent
that, if we do not have an adequate explanation of the single case, we cannot
account for the results obtained by the repetition of single cases. Nevertheless, it
should not be forgotten that a single measurement is always an element of a
measurement procedure by means of which, finally, frequencies are to be obtained.

Let us begin, then, by the single measurement. If, as in the original modal
interpretations, the rule of definite-value ascription depends on the instantaneous
state of the system, it is not surprising that it does not supply the expected result
in nonideal measurements: When the state of the composite system measured
system-+apparatus does not introduce a perfect correlation between the eigenstates
of the measured system’s observable and the eigenstates of the apparatus’ pointer,
it is not difficult to see that the pointer will not belong to the context of definite-
valued observables. By contrast, if the rule of definite-value ascription does not
depend on the instantaneous state of the system, this problem does not arise. It can
be proved that the MHI explains the definite value of the measurement apparatus’
observable both in the ideal and in the nonideal single measurements (for a formal
demonstration and physical examples, see Lombardi and Castagnino 2008: section
6; for the account of consecutive measurements, see Ardenghi, Lombardi, and
Narvaja 2013).
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While definite records of the apparatus’ pointer are obtained even in nonideal
situations, one can legitimately ask whether all nonideal measurements are equally
unsatisfactory. The MHI supplies a clear criterion to distinguish between reliable
and nonreliable frequency measurements (for a detailed explanation and applica-
tions, see Lombardi and Castagnino 2008: section 6). In the former case, the
coefficients of the measured system’s state can be computed on the basis of the
frequencies of the pointer’s readings is spite of the imperfect correlation; in the
latter case, the same computation would give inaccurate results (for a presentation
of the reliability criterion in informational terms, see Lombardi, Fortin, and Lépez
2015). Albert and Loewer (1990, 1993) were right in claiming that the ideal
measurement is a situation that can never be achieved in practice: The interaction
between measured system and measurement apparatus never introduces a com-
pletely perfect correlation; in spite of this, physicists usually perform successful
measurements. The MHI account of the quantum measurement shows that perfect
correlation is not a necessary condition for “good” measurements: The coefficients
of the system’s state at the beginning of the process can be approximately obtained
even when the correlation is not perfect, if the reliability condition is satisfied.
Nevertheless, both in the reliable and in the nonreliable case, a definite reading of
the apparatus’ pointer is obtained in each single measurement.

2.3.2 Measurement and Symmetries

In the von Neumann model of a single measurement, the observable A of the
measured system S, whose eigenstates will be correlated with those of the pointer
P, is considered in formal terms and deprived of any physical content. Then, the
interaction between S and the measuring apparatus M is only endowed with the
role of introducing the correlation between A and P. However, the analysis of
physical situations of measurement shows that there are further aspects to be
considered beyond correlations.

Let us consider the free hydrogen atom, characterized by the Coulombic
interaction between nucleus and electron. Since the Hamiltonian is degenerate
due to its space-rotation invariance, the hydrogen atom is described in terms of
the basis {|n,l,m;)} defined by the complete set of commuting observables
(CSCO) {H L2, LZ}. Nevertheless, that space-rotation invariance makes the selec-
tion of L, a completely arbitrary decision: Given that space is isotropic, we can
choose L, or L, to obtain an equally legitimate description of the free atom. The
arbitrariness in the selection of the z-direction is manifested in spectroscopy by the
fact that the spectral lines of the free hydrogen atom give no experimental evidence
about the values of L,: We have no empirical access to the number m; of the free
atom. The MHI agrees with those experimental results, because it does not assign a
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definite value to L,; the definite value of L, would break the symmetry of the
Hamiltonian of the free hydrogen atom in a completely arbitrary way.

If we want to have empirical access to L;, we need to apply a magnetic field B
along the z-axis, which breaks the isotropy of space and, as a consequence, the
space-rotation symmetry of the atom’s Hamiltonian. In this case, the symmetry
breaking removes the energy degeneracy in m;: Now L, is not arbitrarily chosen
but selected by the direction of the magnetic field. However this, in turn, implies
that the atom is no longer free: The Hamiltonian of the new system includes the
magnetic interaction. As a consequence, the original degeneracy of the (21 + 1)-
fold multiplet of fixed n and [ is now removed, and the energy levels turn out to be
displaced by an amount Aw,,,, which is also function of m;: This is the manifest-
ation of the so-called Zeeman effect. This means that the Hamiltonian, with
eigenvalues ®u,,, is now nondegenerate: It constitutes by itself the CSCO {H}
that defines the preferred basis {|n, [, m;) }. According to the MHI’s rule of definite-
value ascription, in this case H and all the observables commuting with H are
definite-valued: Since this is the case for L? and L., in the physical conditions
leading to the Zeeman effect, both observables acquire definite values.

Besides the free hydrogen atom and the Zeeman effect, the MHI was applied to
many other physical situations, leading to the results expected from a physical
viewpoint; e.g., the free-particle with spin, the harmonic oscillator, the fine struc-
ture of atoms, the Born-Oppenheimer approximation (see Lombardi and Castag-
nino 2008: section 5). Recently, the interpretation was applied to solve the problem
of optical isomerism (Fortin, Lombardi, and Martinez Gonzélez 2018), which is
considered one of the deepest problems for the foundations of molecular
chemistry.

All those physical situations show that we have no empirical access to the
observables that are generators of the symmetries of the system’s Hamiltonian;
and, in the context of measurement, the observable A of the measured system §
may be one of those observables. This is also the case in the Stern—Gerlach
experiment, where S, is a generator of the space-rotation symmetry of
Hgpjy = kS?; it is the interaction with the magnetic field B = B, that breaks the
isotropy of space by privileging the z-direction and, as a consequence, breaks the
space-rotation symmetry of H,;,. Therefore, when the observable A to be meas-
ured is a generator of a symmetry of the Hamiltonian of S, the interaction with the
apparatus M must not only establish a correlation between A and the pointer P, but
also must break that symmetry. Therefore, from a physical viewpoint, measure-
ment can be conceived as a process that breaks the symmetries of the Hamiltonian
of the system to be measured and, in this way, turns an otherwise nondefinite-
valued observable into a definite-valued and empirically accessible observable.
This means that the formal von Neumann model of quantum measurement must be
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complemented by a physical model, in terms of which, measurement is a symmetry
breaking process that renders a symmetry generator of the system’s Hamiltonian
empirically accessible.

2.4 The Modal-Hamiltonian Interpretation and the Role of Symmetries
2.4.1 The MHI and the Galilei Group

In contrast with the great interest of physicists in the symmetries of physical
theories, the discussion on this topic has been scarce in the field of quantum
mechanics (Lévi-Leblond 1974). This situation is reflected in the field of the
interpretation of the theory, where the relevance of the Galilei group — the
symmetry group of nonrelativistic quantum mechanics — is rarely discussed in
the impressive amount of literature on the subject. This is a serious shortcoming in
the foundational context, because the fact that a theory is invariant under a group
does not guarantee the same property for its interpretations, to the extent that, in
general, they add interpretive assumptions to its formal structure. The MHI, on the
contrary, addresses the issue of the role and meaning of the Galilei transformations
in the interpretation: the study of whether and under what conditions the MHI
satisfies the physical constraints imposed by the Galilei group leads to interesting
consequences.

As it is well known, the invariance of the fundamental law of a theory under its
symmetry group implies that the behavior of the system is not altered by the
application of the transformation: In terms of the passive interpretation of symmet-
ries, the original and the transformed reference frames are equivalent. In the
particular case of nonrelativistic quantum mechanics, the application of a Galilei
transformation does not introduce a modification in the physical situation, but only
expresses a change of the perspective from which the system is described.

Harvey Brown, Mauricio Sudrez, and Guido Bacciagaluppi (1998) correctly
pointed out that any interpretation that selects the set of the definite-valued
observables of a quantum system is committed to explaining how that set is
transformed under the Galilei group. This question is particularly pressing for
realist interpretations of quantum mechanics, which conceive a definite-valued
observable as a physical property that objectively acquires an actual definite value
among all its possible values: The actualization of one of the possible values has to
be an objective fact. Therefore, to the extent that the theory preserves its invariance
under the Galilei group, the set of the definite-valued observables of a system
should be left invariant by the Galilei transformations. From a realist viewpoint, it
would be unacceptable that such a set changed as the mere result of a change in the
perspective from which the system is described. The MHI meets the challenge and
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overcomes it successfully. In fact, it can be proved that, in the situations in which
the Schrédinger equation remains invariant under the group, the set of definite-
valued observables picked out by the modal-Hamiltonian rule of definite-value
ascription also remains invariant (see Ardenghi, Castagnino, and Lombardi 2009,
Lombardi, Castagnino, and Ardenghi 2010).

However the argument can also be developed in the opposite direction. Instead
of starting by the interpretation and considering its behavior under the transform-
ations of the relevant group, one can begin by the group of symmetry and ask for
the constraints that it imposes on interpretation. In the case of nonrelativistic
quantum mechanics, the objectivity of the definite-valued observables must be
preserved by making them invariant under the Galilei group. The natural way to
reach this goal is to appeal to the Casimir operators of the Galilei group, which by
definition are the operators invariant under all the transformations of the Galilei
group. If the interpretation has to select a Galilei-invariant set of definite-valued
observables, the members of such a set must be the Casimir operators of the group
or functions of them. The central extension of the Galilei group has three Casimir
operators which, as such, commute with all the generators of the group: They are
the mass operator M, the squared-spin operator 2, and the internal energy operator
W = H — P?*/2mW. The eigenvalues of the Casimir operators label the irreducible
representations of the group; so, in each irreducible representation, the Casimir
operators are multiples of the identity: M = ml, where m is the mass;
§? = s(s + 1)I, where s is the eigenvalue of the spin S; and W = wl, where w is
the scalar internal energy.

This result, which places the Casimir operators of the group in the center of the
stage, may seem to disagree with an interpretation such as the MHI, which endows
the Hamiltonian with the leading role. The definite-valuedness of the mass operator
M and the squared-spin operator > are compatible with the MHI rule of definite-
value ascription, because both commute with H and do not break its symmetries
(they are multiples of the identity). But the Hamiltonian is not a Casimir operator
of the Galilei group; the Casimir operator is the internal energy. Nevertheless, the
disagreement is only apparent. The Hamiltonian is the sum of the internal energy
and the kinetic energy of the system. But the kinetic energy can be disregarded:
When the system is described in a reference frame at rest with respect to its center
of mass, then the kinetic energy turns out to be zero and the Hamiltonian is
identified with the internal energy. This means that the internal energy is the
magnitude that carries the physically meaningful structure of the energy spectrum,
whereas the kinetic energy represents an energy shift that is physically nonrelevant
and merely relative to the reference frame used for the description.

Summing up, the modal-Hamiltonian interpretation can be reformulated in an
explicitly invariant form, according to which the definite-valued observables of a
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quantum system are (i) the observables C; represented by the Casimir operators of
the Galilei group in the corresponding irreducible representation, and (ii) all the
observables commuting with the C; and having, at least, the same symmetries as
the C; (Lombardi, Castagnino, and Ardenghi 2010). Therefore, the interpretation
should be more precisely referred to by the name “modal-Casimir interpretation,”
although in the case of nonrelativistic quantum mechanics the original name is also
adequate.

2.4.2 Interpretation and Symmetry

Now we can come back to the question about the constraints that the Galilei group
imposes on the interpretation of quantum mechanics, but now independently of the
MHI. Let us recall that the application of a transformation belonging to the
symmetry group of a theory does not introduce a modification in the physical
situation, but only expresses a change of the perspective from which the system is
described. This leads to the natural idea, expressed by a wide spectrum of authors
(e.g., Minkowski 1923, Weyl 1952, Auyang 1995, Nozick 2001), that the invari-
ance under the relevant group is a mark of objectivity.

On the other hand, as a consequence of the Kochen-Specker theorem (1967), it
is necessary to pick out, from the set of all observables of a quantum system, the
subset of observables that may have definite values. In turn, from a realist
viewpoint, the fact that certain observables acquire an actual definite value is an
objective fact in the behavior of the system; therefore, the set of definite-valued
observables selected by a realist interpretation must be also Galilei-invariant. But
the Galilei-invariant observables are always functions of the Casimir operators of
the Galilei group. As a consequence, one is led to the conclusion that any realist
interpretation that intends to preserve the objectivity of the set of the definite-
valued observables may not stand very far from the MHI (Lombardi and Fortin
2015).

The invariance of the Schrodinger equation holds for the case of isolated
systems, that is, in the case that there are no external fields applied on the system.
Since, in nonrelativistic physics, fields are not quantized, the effect of external
fields on the system has to be accounted for by its Hamiltonian: The potentials
have to modify the form of the Hamiltonian because it is the only observable
involved in the time-evolution law. As a consequence, in the presence of external
fields, the Hamiltonian is no longer the generator of time-displacements; it only
retains its role as the generator of the dynamical evolution (see Laue 1996,
Ballentine 1998). In turn, since the Hamiltonian includes the action of the fields,
the result of the action of the Galilei transformation on it must be computed in each
case, and the Galilei invariance of the Schrédinger equation can no longer be
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guaranteed. This fact suggests the possibility of generalizing the idea of relying on
symmetry groups in two senses.

It cannot be expected that relativistic quantum mechanics be invariant under
the Galilei group, given the fact that it includes the action of electric and
magnetic fields described by a theory that is not Galilei invariant, but Poincaré
invariant. In turn, in quantum field theory, fields are quantum items, not
external fields acting on a quantum system; as a consequence, the generators
of the Poincaré group do not need to be reinterpreted in the presence of external
factors. These facts lead to generalize the group-based interpretive ideas: The
realist interpretation, expressed in terms of the Casimir operators of the Galilean
group in nonrelativistic quantum mechanics, can be transferred to the relativistic
domain by changing the symmetry group accordingly — the definite-valued
observables of a system in relativistic quantum mechanics and in quantum field
theory would be those represented by the Casimir operators of the Poincaré
group. Since the mass operator M and the squared-spin operator S* are the only
Casimir operators of the Poincaré group, they would always be definite-valued
observables. This conclusion agrees with a usual physical assumption: Elemen-
tal particles always have definite values of mass and spin, and those values are
precisely what define their different kinds. Moreover, the classical limit of
relativistic theories manifests the limit of the corresponding Casimir operators
(see Ardenghi, Castagnino, and Lombardi 2011): There is a meaningful limiting
relation between the observables that acquire definite values according to
relativistic theories and those that acquire definite values according to nonrela-
tivistic quantum mechanics.

These group-based interpretive ideas can be further generalized in a second
sense. If invariance is a mark of objectivity, there is no reason to focus only on
spacetime global symmetries. Internal or gauge symmetries should also be con-
sidered as relevant in the definition of objectivity and, as a consequence, in the
identification of the definite-valued observables of the system. For instance, in
relativistic quantum mechanics a gauge symmetry is what identifies the charge as
an objective quantity. Therefore, a realist interpretation can be extended to the
gauge symmetries of the theory: The observables represented by operators invari-
ant under those symmetries are also definite-valued observables according to the
theory.

In summary, besides its wide applicability in the nonrelativistic quantum
domain, the MHI opens the way for a general interpretive strategy, valid for any
realistic view of quantum theories — the definite-valued observables of a system,
whose behavior is governed by a certain theory, are the observables invariant under
all the transformations corresponding to the symmetries of the theory, both exter-
nal and internal.
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2.5 A Modal Ontology of Properties
2.5.1 The Structure of the Ontology

Traditionally, the interpretations of quantum mechanics concentrate their efforts on
the interpretive challenges of the theory. For instance, they focus on searching a
solution of the measurement problem without falling beyond the limitations
imposed by the no-go quantum theorems. Due to their difficulty, these tasks
usually lead people to disregard ontological issues, in particular, the questions
about the nature of the items referred to by quantum mechanics. The MHI has
tackled the ontological questions from the very beginning.

As explained in Section 2.2, the MHI adopts an algebraic perspective. This
decision about the formalism is not confined to the formal domain, but rather has
relevant consequences about the structure of the ontology referred to by quantum
mechanics, in particular, about the basic categories of such an ontology. In fact,
when the logical priority of observables over states is transferred to the ontological
domain, the space of observables turns out to embody the representation of the
elemental items of the ontology — observables (mathematically represented by self-
adjoint operators) ontologically represent type-properties, and the values of the
observables (mathematically represented by the eigenvalues of the corresponding
operators) ontologically represent the possible case-properties corresponding to
those type-properties. Among the possible case-properties of a type-property, only
one acquires a definite value (Lombardi and Castagnino 2008: section 8).

In this modal ontology of properties, a quantum system is a bundle of properties:
type-properties with their corresponding case-properties. The notion of bundle of
properties is a well-known idea in contemporary metaphysics: Philosophers of the
empiricist tradition have preferred to replace the traditional picture of properties
“stuck” to an underlying and unobservable substance by an ontological realm
where individuals are nothing but bundles of properties. Properties have meta-
physical priority over individuals; therefore, they are the fundamental items of the
ontology. However, the view of bundles of properties that is appropriate for
quantum mechanics does not agree with the “bundle theory” of twentieth-century
analytic metaphysics concerning two aspects.

In the first place, according to the traditional versions of the bundle theory, an
individual is the confluence of certain case-properties, under the assumption that
the corresponding type-properties are all determined in terms of actual definite
values. For instance, a particular ball is the confluence of a definite position, say,
on the chair; a definite shape, say, round; a definite color, say, white; etc. The ball
is the bundle of those actual case-properties. In general, bundle theories identify
individuals with bundles of actual properties. By contrast, in the framework of the
MHI, a system is identified by its space of observables, which defines all the
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admissible type-properties with their corresponding possible case-properties.
Therefore, a quantum system is a bundle of possible case-properties; it inhabits
the realm of possibility and manifests itself only partially in the realm of actuality.

This ontological interpretation embodies a possibilist conception of possibility,
as opposed to an actualist view, which reduces possibility to actuality. According
to possibilism, possibility is an ontologically irreducible feature of reality. Possible
items — possibilia — constitute a basic ontological category (see Menzel 2007). In
other words, possibility is a way in which reality manifests itself, a way independ-
ent of and not less real than actuality. The reality of possibilia is manifested by the
fact that they may produce definite effects on actual reality even if they never
become actual (e.g., “non-interacting experiments” of Elitzur and Vaidman 1993,
Vaidman 1994).

The second specific aspect of this quantum-bundle view is related to the way in
which bundles are conceived. In the traditional versions of the bundle theory, the
claim is that individuals are bundles of properties; therefore, it is necessary to find
what confers individuality to individuals. In general, the task is fulfilled by some
subset of the bundle’s properties, together with some further principle that ensures
that no other individual must possess that subset and that preserves the identity of
the individual through change. By contrast, due to the indistinguishability of
“identical particles,” quantum mechanics poses a serious challenge to the notion
of individual, either in the substratum-properties picture or in the bundle picture
(see French and Krause 2006 and references therein). The identification of the
complexions resulting from the permutations of identical particles makes the
notion of individual run into trouble.

The MHI tackles the problem by endorsing the idea that quantum systems are
not individuals — they are strictly bundles, and there is no principle that permits
them to be subsumed under the ontological category of individual. Regrettably,
this ontological picture is not properly captured by any formal theory whose
elemental symbols are variables of individual. An ontology populated by bundles
of possible properties cries for a “logics of predicates,” in the spirit of the “calculus
of relations” proposed by Alfred Tarski (1941), where individual variables are
absent.

2.5.2 One Ontology, Many Solutions

Quantum mechanics poses different ontological problems — contextuality prevents
the simultaneous assignment of determinate values to all the properties of the
system, nonseparability seems to undermine the independent existence of nonin-
teracting systems, and indistinguishability challenges the traditional category of
individual. The usual strategies focus only on one of these problems: They design
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an interpretation to solve it, disregarding the remaining difficulties. With its
ontology of possible properties, the MHI aspires to provide a “global” approach,
which solves most problems in terms of a single ontology.

The Kochen-Specker theorem expresses the impossibility of ascribing actual
case-properties to all the type-properties of the system in a noncontradictory
manner. The classical idea of a bundle of actual properties does not work in the
quantum ontology. But this is not a difficulty for the MHI, which conceives the
quantum system as the bundle of all the possible type-properties with their
corresponding case-properties, as defined by the space of observables. This onto-
logical view is immune to the challenge represented by the Kochen-Specker
theorem, because this theorem imposes no restriction on possibilities (see da Costa,
Lombardi, and Lastiri 2013).

Quantum nonseparability is the consequence of the nonfactorization of entan-
gled states. When the states are assigned to individual systems that interacted in the
past, the difficulty is to explain the correlations between the values of observables
belonging to noninteracting systems, which typically are separated in space. The
assumption of collapse leads to understand nonseparability as nonlocality, at risk
of falling into the “spooky action at a distance” reported by Albert Einstein.
Without collapse, nonseparability seems to imply a kind of holism, in the sense
that quantum systems are not composed by what are commonly conceived as their
subsystems; but this idea can hardly be compatibilized with the view of systems as
individuals, that is, entities that preserve their identity through change. For the
MHLI, the interpretation of nonseparability as holism does not represent a difficulty.
Since quantum systems are strictly bundles and not individuals, there is no
principle of individuality that preserves the individuality of the component systems
in the composite system (see da Costa and Lombardi 2014). The composite system
is a single bundle, where the identity of the components is not retained. Therefore,
the new bundle-system acts and reacts as a whole — there are not subsystems whose
state nonseparability must be explained or whose correlations seem to imply
instantaneous action at a distance.

The same idea of the “dissolution” of component bundles in the composite
bundle is what allows the MHI to face the problem of indistinguishability. In the
discussions about the indistinguishability of “identical particles,” the problem is
usually formulated in terms of the possible combinations (complexions) that can be
obtained in the distribution of particles over possible states. The problem is, then,
to explain why a permutation of particles does not lead to different complexions in
quantum statistics. This feature is introduced in the formalism as a restriction on
nonsymmetric states, but the strategy has an unavoidable ad hoc flavor in the
context of the theory. According to the MHI ontology, when a bundle is the result
of the combination of identical bundles, it can be expected that the result does not
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depend on the order in which the original identical bundles are considered; the
combination of identical bundles must be commutative. This commutativity is
manifested by the fact that the observables that constitute the resulting bundle-
system are represented by operators symmetric with respect to the permutation of
the indices coming from the original identical bundles. Here symmetry is not an ad
hoc assumption but a consequence of an ontological feature. When the expectation
values of these symmetric observables are computed, only the symmetric part of
the state has an effect. The nonsymmetric part is superfluous, because it plays no
role in the physically measurable magnitudes (see details in da Costa et al. 2013).
Therefore, symmetrization is not the result of an ad hoc strategy, but is due to
ontological reasons: The symmetry properties of states are a consequence of the
symmetry of the observables of the whole composite system, which is, in turn, a
consequence of the ontological picture supplied by the interpretation. In other
words, from the perspective given by the modal-Hamiltonian interpretation,
indistinguishability is not a relation between particles manifested in statistics, but
rather an internal symmetry of a single bundle of properties.

In summary, according to the MHI, the talk of individual entities and their
interactions can be retained only in a metaphorical sense. In fact, even the number
of particles is represented by an observable, and superpositions of different particle
numbers are theoretically possible. This fact, puzzling from an ontology populated
by individuals, involves no mystery in an ontology of properties: If quantum
systems are bundles of possible properties, the particle picture, with a definite
number of particles, is only a contextual picture valid exclusively when the number
of particles satisfies the constraints of the rule of definite-value ascription. In other
cases, wave packets may remain narrow and more or less localized during a
relatively long time. In this way, particle-like behavior can temporarily emerge —
wave packets can represent approximately definite positions and can follow an
approximately definite trajectory (see Lombardi and Dieks 2016). Moreover, the
MHI has proved to be compatible with the theory of decoherence (Lombardi 2010,
Lombardi, Ardenghi, Fortin, and Castagnino 2011, Lombardi, Ardenghi, Fortin,
and Narvaja 2011). Nevertheless, those particular situations do not undermine the
fact that quantum systems are nonindividual bundles of properties.

2.6 Conclusions and Perspectives

The MHI has been developed and successfully articulated in many directions since
its first presentation in 2008. Of course, this does not mean that any interpretive
question about quantum mechanics has already been solved. Nevertheless, given
the results obtained up to this moment, it deserves to be taken into account and
further explored.
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There are several issues that can still be faced from this interpretive frame-
work. A very interesting question is that related to the interpretation of external
fields in a theory that, as quantum mechanics, does not treat fields as quantized
entities. In particular, the Aharonov-Bohm effect is worthy of being analyzed
from an ontology-of-properties view. Another topic to be examined is how the
MHI is in resonance with a closed-system view of decoherence (Castagnino and
Lombardi 2004, 2005a, b, Castagnino, Laura, and Lombardi 2007, Castagnino,
Fortin, and Lombardi 2010, 2014), according to which decoherence is a process
relative to the selected partition of a closed system and how this leads to a top-
down view of quantum mechanics based on an algebraic view that turns
entanglement and discord also into relative phenomena (for initial ideas, see
Lombardi, Fortin, and Castagnino 2012, Fortin and Lombardi 2014, Lombardi
and Fortin 2016). Finally, the natural subsequent interpretive step consists in
extending the MHI to quantum field theory, not only regarding the definite-
valued observables, but also with respect to the ontology referred to by the
theory. In particular, an ontology-of-properties view seems to favor a field view
in the debate on fields vs. particles, but without representing an obstacle to
explaining the emergence of the nonrelativistic quantum ontology. These differ-
ent problems will guide the future research on the further development and
extrapolation of the MHL
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